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Measure of Irreversibility and Entropy 
Production in Open Quantum Systems 

K. L e n d i  1 

Received July 20, 1987 

A new concept of a measure of irreversibility for quantum dynamics in open 
systems is introduced as a suitably regularized substitute for the common notion 
of entropy production, which, unfortunately, yields infinite values for so many 
irreversible processes of physical relevance. 
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The notion of entropy production has been introduced in the 
phenomenological description of nonequilibrium processes ~I) as a key 
concept, and far-reaching consequences have been attributed to it, ranging 
from "weakly irreversible" processes in the vicinity of thermodynamic 
equilibrium of ordinary physical systems up to "strongly irreversible" 
processes very far from equilibrium even in living systems. Attempts to 
derive the assertions of the phenomenological approach from first prin- 
ciples within the context of quantum theory have proven to be extremely 
difficult and have left open many relevant questions, particularly the 
appropriate definition of entropy itself for general nonequilibrium ~2 5) as 
well as the underlying dynamical laws for time evolution. (6 8) Although 
there are many different definitions of entropy, (4'9) it is reasonable to give 
preference to the von Neumann entropy 

S ( p )  ~ - T r { p  In p} ( l )  

(p a density operator) because of its outstanding properties, (4'9'1~ 
culminating in strong subadditivity, as proven by Lieb and Ruskai, m) and 
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in particular also because of its information-theoretic interpretation and 
obvious significance. (9"12'13) In addition, a measure for the entropy of a state 
p relative to another state e can be derived from S and has become known 
as relative entropy, ~4'5'9) 

R(p/a) ~ T r { p  In p - p  In a} (2) 

Finally, R has been used by Spohn and Lebowitz (~4'1s) for a definition of 
entropy production ~ under the assumption that time evolution 

A t 

is given by a uniquely relaxing and completely positive quantum dynamical 
semigroup At. However, the obtained result, 

(a an invariant state: Ata = a) is only of very limited usefulness, since for 
most pairs {p, a} one finds 0 = oo even in finite-dimensional Hilbert spaces 

and the same is true (14'16) for R. This is extremely unsatisfactory in view 
of the general bounds 0 ~< S ~< ln{dim Jg}. Furthermore, the definition of 
can evidently be reasonable only for processes with monotonic behavior of 
S as a function of time, since otherwise the derivative taken at t = 0 cannot 
be a characteristic quantity for the entire time evolution. Of course, for 
thermodynamic situations close to equilibrium involving faithful states 
Eq. (3) is appropriate. (15) But the possibilities admitted by the properties of 
A, for time evolution are much more general and include, just to quote one 
extreme example, situations such as spontaneous photon emission from a 
pure initial to a pure final state. Again, for this case, R = ~- -o% but any 
reasonable physical thinking would suggest a result somehow proportional 
to the inverse lifetime. 

It will be our intention in the following to construct a measure (or 
degree) of irreversibility, denoted by P, well-defined for all pairs {p, a} of 
state space, in such a way that it is closely analogous to ~ whenever the 
latter makes sense, but extends successfully to all other cases, too. The 
relevant problems can be explained for dim W = N < o% whereas extension 
of the results to N = oe will be discussed at the end. 

In order to have a mathematically safe basis, let us consider the wide 
class of open systems whose time evolution is given by a quantum 
dynamical semigroup A~, t >~0, with its dual A* completely positive map- 
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pings (in the sense of Stinespring ~7'8)) of the C*-algebra of observables. 
Then, the dynamical law for state changes is a master equation, 

pt=f~pt, pt=~/(M), t>~O (4) 

for a time-dependent N x N density matrix, where 5r is the infinitesimal 
Kossakowski generator of A t = e x p { S t }  with known structure (7'~7'18) and 
V IM) is the state space, i.e., a convex subset of a real vector space of dimen- 
sion M = N  2 -  1. To replace R, a suitable relative measure d//(p/a) is 
defined as follows. Consider, first, an operator-valued function f(p, ~) with 
the following properties: 

(a) f(p, ~) =f(a, p) >1 O, f =  0 iff p = a, V{p, a} ~ V (M) 

(b) f(UpU*, Uo-U*)= Uf(p, a) U*, UU* ='ON (5) 

(c) f(/5, a) = f(p, a) iff/5 = p 

(d) 7r{f(p, a)} c [0, 1], 7r the spectrum 

Since S(p) measures the information on n(p), we define J by perfor- 
ming the same operation on z~(f), 

JC/(p/a) ~ - 2  Tr{f (p ,  a ) In  f (p ,  a)} (6) 

where the factor of 2 is a matter of convenience. Note the change in inter- 
pretation when comparing J// with S: whereas S(p) measures the infor- 
mation of a state p with respect to the central state ~ = ( l /N) ~ N ('~ N the 
unit in N dimensions), in that S attains its maximum for the latter 
(uniform probability ~ minimum information) but its minimum with S = 0 
for pure states (maximum information), the definition of ~ implies 
maximum information (J{ = 0) for p = a and ~ > 0 otherwise. Thus, one 
can say that in Jg the final destination states a play the same role as the 
pure states do in S. Or, more precisely, if time evolution carries p into a via 
p,=A,p  (Vp~/(M)), the quantity .#[(p,/a) contains the time-dependent 
information about the approach to stationarity, since ~ is large for p, "far 
apart" from a, but is zero if one knows with certainty that the final state 
has been reached. This is the case in the asymptotic time limit (t ~ oo); at 
no intermediate times (0~< t <  ~ )  can p, = a hold, (~7) as follows basically 
from the linearity of (4). 

A convenient realization o f f  used for the following examples is given 
by 

fo(p, ~)= '( p - 0-)  2 ( 7 )  

where the first three properties in (5) are trivial and (d) follows from 
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{p,~r}>~0, T r p = T r c r = l ,  Trp2~<l, Tr~2~<l and 0~<Tr(pa)~<l. The 
latter bounds are obtained after applying the Schwartz inequality to (191 

N 

Tr(pa)=  y '  [(a(i).b(k))122i# k 
i , k  = 1 

where pa(~  2~a (~ ab(k)=/~kb (k~, and, Ila(~ = IIb<k~ll = 1, Vi, k. In order to 
appreciate an important property of J///o shared by neither S nor by R, we 
consider a very simple model for spontaneous emission of a two-level 
atom ~2~ with time-dependent state 

/1 

Obviously, p =  (1 o) and ~ =  (0 Ol) ' S(p)-S(~r)=O, and R(p/~r)= oe. In 
contrast, one finds for ~ on use of (7) the value d//o = 2 In 2, which seems 
to reflect the history of the unorthodox time evolution p -~ ~ ~ ~, where the 
central state 

with maximum S ( ~ ) = l n 2  is passed at time tr (ln 2)/7. Note that ~o  
takes on the above value in any dimension N provided p ~ a, [p, ~] = 0, 
p : =  p, and a2= a. It is also obvious that J/~o(p,/a) is a well-behaved non- 
negative function of t, integrable (w.r.t. dr) on [0, oc), and, therefore, its 
complete integral ~o JCdo(Pt/a) dt keeps track of the system's history of time 
evolution along the trajectory through state space and provides infor- 
mation quite analogous to entropy production if divided by the square of a 
characteristic lifetime r of the system as a whole. Physically, x should be 
identical to the common lifetime of a decaying upper state for two-level 
systems, but should, of course, comprise all relevant relaxation constants in 
more general situations. (~8~ Based on these ideas we are now in position to 
give a final definition: 

For an irreversible process 

A t  

described by a uniquely relaxing, completely positive quantum dynamical 
semigroup At with Kossakowski generator ~ ,  the measure (or degree) of 
irreversibility P is defined by 

P ~--j ~l(pt/~) dt (9) 
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where the characteristic lifetime r is defined through 

z ~ Tr(•Atp)  2 dt (i0) 

Two proofs are necessary regarding the existence of the integrals in (9) and 
(10), with the result that 0 < P <  oo for N <  oo. This follows essentially 
from the spectral properties of the evolution matrix (17'18) associated to s 
but the details must be given elsewhere. (21) 

Let us now consider two illustrative applications of practical impor- 
tance, the first for the model given by Eq. (8) and the second for a more 
general process with two relaxation times as frequently used to describe 
free induction decay (FID) in terms of Bloch's equations. (22) First, for 
spontaneous emission one obtains ~=7  -1 and P = 7 ( l + l n 2 ) .  In a 
geometrical interpretation initial and final states are represented by two 
diametrical points on the Bloch sphere of maximum radius and time 
evolution traces a straight trajectory connecting both of them through the 
center. The value of P will be reduced if the initial state is a mixed state (a 
point inside the sphere) and for such situations ~ in (3) is also finite and 
can be compared with P. As a matter of fact, both almost coincide, and this 
again emphasizes the analogy of P with the conventional notion of entropy 
production. 

Second, let us turn to a class of special solutions of the traditional 
optical or magnetic Bloch equations, 

l (1-w[1-exp(-71t)] 2uexp[-(72-ieo) t]) (11 
P'=2\2uexp[--(72+ico) t] 1 + w[1 - e x p ( - 7 1 t ]  

where 0 ~< u ~< 1/2, 0 ~< w ~< 1, and complete positivity of time evolution is 
guaranteed (7'~8'23) by the semi-inequality 7~ <~ 272. The analytic solutions of 
Eqs. (9) and (10) using (7) yield a characteristic time scale 

= 4171 w 2 + (4u2/Y2)(7~ + o)2)] ' (12) 

and the representation 

1 1 (72 + 4u27,) in ( l  ? u 2 )  
r2P = 8~ y22 (7~ + 4u27~) - 87~ 72 

2u2 8u4 F(1, b+l'b+2; - 4 u  2) (13) + 7-~ F( 1, b; b + 1; - 4u 2) -+ 72(b + 1~) 

where F is the Gaussian hypergeometric function (24) and b =  72/(72--71)" 
When applying this result to an ideal FID experiment we can set u = 1/2, 

822/50/5-6-17 
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w= 1 and with the special ratio 72/71 = 2  chosen for simplicity, Eq. (13) 
reduces to 

(14) 

where co now has the meaning of the frequency offset. Recall that the 
lineshape for this decay process (25) is inversely proportional to 
[1 + (09/72)2]. Thus, P is a minimum at the linecenter (on resonance) and 
increases toward the wings. 

Coming back to the general formula (9), some comments should now 
be made about the extension to infinite dimensions. If the open system is 
described in a separable Hilbert space ~ (dim ~ = oo) and associated 
state space T+(~,ut~), the positive cone of trace-class operators on ~ ,  a 
bounded infinitesimal generator ~ of a norm-continuous completely 
positive quantum dynamical semigroup A, has been derived by 
Lindblad. ~26) Consequently, the problem of formulating time evolution in 
analogy to N < oo is definitely settled for N = oo. Regarding the existence of 
JC(pt/~r), a sufficient condition will be provided by processes with 
S(Atp)<oo(t>~O) and integrability, i.e., existence of r and P is most 
probably guaranteed if the evolution matrix (17) corresponding to 
contains at most finite-dimensional Jordan blocks. This, however, will need 
further investigations and rigorous proofs, of course. 

In conclusion, one can say that the quantity P contains the following 
important information on the dynamics of a system: if time evolution 
changes the state p, such that S(p,) is strongly (weakly) varying on the 
characteristic timescale r, the value of P will be large (small). This allows a 
suitable comparison of different processes according to their "strength" of 
irreversibility, as is also the case with ~ in (3) whenever the latter is well- 
defined. Of course, one should remark that ~ provides the much simpler 
concept in that it is given already in terms of the semigroup generator ~1s'17) 

only, whereas the determination of P involves the full dynamics At. 
Despite of this apparent shortcoming, this seems, in general, unavoidable 
in view of the possibly complicated solutions (17) of (4), which imply in 
many cases that the relevant state changes need not necessarily occur in the 
neighborhood of t = 0. Thus, definition (9) is of the desired general validity. 
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